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Field-induced structure transformation in electrorheological solids
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We have computed the local electric field in a body-centered tetragonal~bct! lattice of point dipoles via the
Ewald-Kornfeld formulation, in an attempt to examine the effects of a structure transformation on the local-
field strength. For the ground state of an electrorheological solid of hard spheres, we identified a different
structure transformation from the bct to the face-centered cubic~fcc! lattices by changing the uniaxial lattice
constantc under the hard-sphere constraint. In contrast to the previous results, the local field exhibits a
nonmonotonic transition from bct to fcc. Asc increases from the bct ground state, the local field initially
decreases rapidly towards the isotropic value at the body-centered cubic lattice, decreases further, reaching a
minimum value and increases, passing through the isotropic value again at an intermediate lattice, reaches a
maximum value and finally decreases to the fcc value. An experimental realization of the structure transfor-
mation is suggested. Moreover, the change in the local field can lead to a generalized Clausius-Mossotti
equation for the bct lattices.

DOI: 10.1103/PhysRevE.64.031501 PACS number~s!: 83.80.Gv, 77.22.2d, 02.60.Lj
th
b
s
o
b
th

e
la
e
a
o

d
b
a

fc

e
-
n
th

th
,

ta

g
on
IV

ion
fo
s

n
of

onal
is

nter
ice

-

by
ic

ires

he

es
I. INTRODUCTION

When a strong field is applied to a composite medium,
induced change of the medium can lead to spectacular
havior, both in electrical transport and in optical respon
@1#. If a strong electric field is applied to a suspension
particles where the particles have a large electric polariza
ity, the induced dipole moments of the particles can order
suspended particles into a body-centered tetragonal~bct! lat-
tice @2#. This process is known as the electrorheological~ER!
effect.

Recently, Tao and Jiang@3# proposed that a structur
transformation from the bct ground state to some other
tices can occur when one simultaneously applies a magn
field perpendicular to the electric field and the polarized p
ticles possess magnetic dipole moments. Sheng and cow
ers @4# verified the proposal experimentally and observe
structure transformation from the bct to face-centered cu
~fcc! lattices. Motivated by these studies, we propose an
ternative structure transformation from the bct to the
structure, through the application of electric fields only.

The plan of the paper is as follows. We will adopt th
point-dipole approximation@2# and calculate the dipole lat
tice sum via the Ewald-Kornfeld formulation in Sec. II. I
Sec. III, we discuss the effects of a structure change on
local field when the lattice constants vary. If we change
uniaxial-lattice constant under the hard-sphere condition
series of transformations occur among the bct ground s
body-centered cubic~bcc!, intermediate and fcc lattices~see
Fig. 1!. The results will be compared with those of a tetra
onal lattice. We also make a contact with macroscopic c
cept and derive the Clausius-Mossotti equation. In Sec.
we will compute the dipole interaction energy as a funct
of various lattices and discuss a possible structure trans
mation by the application of rotating electric fields. Discu
sion and conclusion on our results will be given.

II. FORMALISM

In this section, we apply the Ewald-Kornfeld formulatio
@5,6# to compute the local electric field for a bct lattice
1063-651X/2001/64~3!/031501~5!/$20.00 64 0315
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point dipoles. The bct lattice can be regarded as a tetrag
lattice, plus a basis of two point dipoles, one of which
located at a corner and the other of which at the body ce
of the tetragonal unit cell. The tetragonal lattice has a latt
constantc5qj along thez axis and lattice constantsa5b
5jq21/2 along thex andy axes. The volume of the tetrago
nal unit cell remainsVc5j3 as q varies. In this way, the
degree of anisotropy of the tetragonal lattice is measured
how q is deviated from unity and the uniaxial anisotrop
axis is along thez axis.

So far, the lattice parameterj remains arbitrary. For hard
spheres in an ER solid, however, the lattice parameterj can
be determined from the relation: 2a21c2516R2, whereR is
the radius of the spheres. The hard-sphere condition requ
a>2R andc>2R. For the bct ground state,a5b5A6R and
c52R, while for the fcc lattice,a5b52R andc5A8R @2#.
The bcc lattice is characterized bya5b5c5A16/3R. Each
sphere has a point dipole embedded at its center.

The lattice vector of the tetragonal lattice is given by

R5j~q21/2l x̂1q21/2mŷ1qnẑ!, ~1!

wherel ,m,n are integers. Suppose there areN point dipoles
pi located atr i in a unit cell. The local electric fieldEi at a
particular point dipole atr i can be expressed as a sum of t
electric field of all dipoles atrRj :

Ei5(
j

8
(
R

TiRj•pj , ~2!

where ‘‘prime’’ denotes a restricted summation that exclud
j 5 i whenR50 and

Ti j 52“ i“ j

1

ur i2r j u
~3!

is the dipole interaction tensor. Equation~2! can be recast in
the Ewald-Kornfeld form@5,6#:
©2001 The American Physical Society01-1



s

C. K. LO AND K. W. YU PHYSICAL REVIEW E 64 031501
FIG. 1. A sequence of unit cells of bct lattice
during structure transformation:~a! Tao’s bct lat-
tice, ~b! bcc lattice,~c! intermediate lattice, and
~d! fcc lattice.
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pi•Ei5(
j

8
(
R

@2~pi•pj !B~r iRj !1~pi•r iRj !

3~pj•r iRj !C~r iRj !#2
4p

Vc
(

GÞ0

1

G2 expS 2
G2

4h2D
3F ~pi•G!exp~ iG•r i !(

j
~pj•G!exp~2 iG•r j !G

1
4h3pi

2

3Ap
, ~4!

wherer iRj5ur i2rRj u, h is an adjustable parameter andG is
a reciprocal lattice vector:

G5
2p

j
~q1/2ux̂1q1/2v ŷ1q21wẑ!. ~5!

The B andC coefficients are given by

B~r !5
erfc~hr !

r 3
1

2h

Apr 2
exp~2h2r 2!, ~6!

C~r !5
3 erfc~hr !

r 5
1S 4h3

Apr 2
1

6h

Apr 4D exp~2h2r 2!, ~7!

where erfc(r ) is the complementary error function. Thus th
dipole lattice sum of Eq.~2! becomes a summation over th
03150
real-lattice vectorR as well as the reciprocal-lattice vecto
G. Here we have considered an infinite lattice. For fin
lattices, one must be careful about the effects of differ
boundary conditions@7#.

We should remark that although a tetragonal lattice is c
sidered, Eq.~4! is applicable to arbitrary Bravais lattices. Th
adjustable parameterh is chosen so that both the summ
tions in the real and reciprocal lattices converge most rapi
In what follows, we will limit ourselves to the bct cell with
two dipoles per tetragonal cell, and the Ewald-Kornfeld su
mation @Eq. ~4!# can be carried out. We will consider tw
cases depending on whether the dipole moment is paralle
perpendicular to the uniaxial anisotropic axis. In both cas
we will compute the local field as a function of the degree
anisotropyq.

III. EFFECTS OF STRUCTURE TRANSFORMATION
ON THE LOCAL FIELD

Consider the longitudinal field case:p5pẑ, i.e., the dipole
moments being along the uniaxial anisotropic axis. The lo
field E at the the lattice pointR50 reduces to

Ez5p(
j 51

2

(
R

8
@2B~Rj !1zj

2q2C~Rj !#

2
4pp

Vc
(

GÞ0
S~G!

Gz
2

G2expS 2G2

4h2 D 1
4ph3

3Ap
, ~8!
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FIG. 2. ~a! The local-field factor plotted
against log10q for dipole moments along the
uniaxial anisotropic axis.~b! Similar to ~a!, but
for dipole moments perpendicular to the uniaxi
anisotropic axis.~c! and ~d!: Magnified versions
of ~a! and ~b!, respectively, to show the differen
lattices during structure transformation.
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and Ex5Ey50. In the equation,zj and Rj are respectively
given by

zj5n2
j 21

2
, Rj5UR2

j 21

2
~ax̂1aŷ1cẑ!U,

andS(G)511exp@i(u1v1w)/p# is the structure factor. The
local field will be computed by summing over all integ
indices (j ,l ,m,n)Þ(1,0,0,0) for the summation in the rea
lattice and (u,v,w)Þ(0,0,0) for that in the reciprocal lattice
Because of the exponential factors, we may impose an u
limit to the indices, i.e., all indices ranging from2L to L,
whereL is a positive integer. ForqÞ1, the regions of sum-
mation will be rectangular rather than cubic in both the r
and reciprocal lattices. The computation has been repe
for various degrees of anisotropy withq ranging from 0.5 to
2.0. A plateau value forEz is found for eachq within a
certain range ofh values: 1,h,100.6. For instance, the
calculations withh5100.5 yield numerical results already ac
curate up to 16 significant figures, indicating that conv
gence of the local field has indeed been achieved with
upper limit L54. For larger anisotropy~either q!1 or q
@1), a spherical region of summation can help the conv
gence@8#.

For the transverse-field case in which the dipole mome
are perpendicular to the uniaxial anisotropic axis, Eq.~8! can
still be applied to evaluate the local field by modifyingGz to
Gx while taking the gradient along the direction of the d
pole, say thex axis, and obtain the expression of the loc
field.

The results of the local-field strength~normalized to
4pP/3) against log10 q for the longitudinal and transverse
field cases are plotted in Figs. 2~a! and 2~b! respectively. For
comparison, the corresponding results for a tetragonal la
@8# ~i.e., in the absence of the body centers! are also plotted
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on the same figure. Asq decreases, the local field for th
longitudinal-field case increases rapidly while that for t
transverse-field case decreases rapidly. In both cases, whq
deviates from unity, the effect of anisotropy has a p
nounced effect on the local-field strengths.

Unlike the tetragonal case, the local field of the bct latt
does not vary much nearq51. When we magnify the scale
in Figs. 2~c! and 2~d!, we observe a nonmonotonic behavi
asq increases: asc increases from bct, the local field initially
decreases rapidly towards the isotropic value at bcc,
creases further, reaching a minimum value and increa
passing through the isotropic value again at an intermed
lattice, reaches a maximum value and finally decreases to
fcc value. The isotropic value of the intermediate lattice
attributed to the symmetry of the dipole interaction tenso

Our present theory is of microscopic origin, in the sen
that we have computed the lattice summation by the Ewa
Kornfeld formulation. We have not invoked any macroscop
concepts like the Lorentz cavity field@9–11# in the calcula-
tions. However, to corroborate with these established c
cepts can lead to a modification of the Clausius-Moss
equation.

More precisely, we use the result of the local field
evaluate the effective polarizabilityaeff of the dipole lattice.
The total field acting on a dipole is the sum of the appli
field E0 and the local field due to all other dipoles, hence

p5a~E01bP!,

where a is the polarizability of an isolated dipole andb
5E/P is the local-field factor. We will usebz and bxy to
denote the local-field factors parallel and perpendicular
the uniaxial anisotropic axis. Note thatbz5bxy54p/3 when
q51. Let P5p/Vc , the above equation becomes a se
consistent equation. Solving yields
1-3
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p5S a

12ab/Vc
DE0[aeffE0 . ~9!

The effective dielectric constanteeff is given by 1
14paeff /Vc . Thus,

eeff21

b8eeff1~32b8!
5

4pa

3Vc8
, ~10!

where b853b/4p and Vc85Vc/2. For the bcc lattice,b8
51, eeff satisfies the well-known Clausius-Mossotti equ
tion. Thus Eq. ~10! represents a generalization of th
Clausius-Mossotti equation to the bct lattices.

IV. STRUCTURE TRANSFORMATION VIA ROTATING
ELECTRIC FIELDS

The results of the local-field strength as well as the g
eralized Clausius-Mossotti equation allow us to compute
dipole interaction energy per particle in the ER solid, simi
to calculations of Tao and Sun@2#. If an uniaxial field E
5 ẑEz is applied, the dipole interaction energy per particle
given by u52p•E/2e2, wheree2 is the dielectric constan
of the host medium. SinceEz5bz(2p/Vc) andp5aEz , we
obtain

u52
bz

~Vc /a3!
~11!

in units of p2/e2a3. As q increases from the bct ground sta
to the fcc structures, the volume of the unit cell increa
initially, reaching a maximum at the bcc structure, then
creases to the fcc structure. As the local-electric-fi
strength remains almost constant in the range 1,q,1.5, the
increase in the magnitude of the dipole energy per particl
attributed to the decrease in the volume of the unit cell. C
comitantly, as shown in Fig. 3, the energy per particle i
tially increases from the bct ground state, reaching a m
mum near the bcc structure and then decreases all the
towards the fcc structure. The transformation involves clim
ing up an energy barrier beyond which the fcc structure
comes stable, which is in contrast with the smooth a
monotonic transition proposed in previous work@3,4#.

Next we apply a rotating electric fieldExy5rEz in the
plane perpendicular to the uniaxial electric field, wherer
5Exy /Ez is the ratio of the rotating to axial field strengt
The instantaneous electric fields areEx5Exy cos(vt1f) and
Ey5Exy sin(vt1f), wherev is the angular velocity of the
rotating field andf is an arbitrary phase angle. In this cas
the dipole interaction energy per particle is modified to

u52
bz1r 2bxy

~11r 2!~Vc /a3!
~12!

in units of p2/e2a3. As shown in Fig. 3, when we increas
the ratio r, the bct ground-state energy increases while
fcc energy remains unchanged, but there is still an ene
barrier between the bct and fcc states for smallr. When r
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.2.6, the energy barrier disappears and the fcc structur
the most stable. Physically one has to break the chain
make the structure transformation possible when the stre
of the rotating electric field is sufficiently large.

From the energy consideration, we suggest that the st
ture transformation be realized in experiments by applyin
rotating electric field in the plane perpendicular to t
uniaxial electric field. In this field configuration, both th
time average value of the induced dipole moment and tha
the rotating electric field vanish in the plane. However, t
instantaneous dipole moment will induce an overall attr
tive force between the particles in the plane perpendicula
the uniaxial field. This is very different from the previou
transformation proposed by Tao and Jiang@3# and experi-
mentally verified by Sheng and coworkers@4# by using
crossed electric and magnetic fields on microparticles
possess permanent magnetic dipole moments. In our c
the field configuration is all electrical; no magnetic fie
and/or magnetic materials need to be used. Alternatively,
may apply the same rotating electric field configuration to
magnetorheological fluid to achieve the structure transform
tion.

V. DISCUSSION AND CONCLUSION

Here a few comments on our results are in order. As m
tioned in Ref.@3#, the energy difference between the fcc a
hexagonal close-packed~hcp! structures is very small, and i
comparable to the thermal energy, there is a competition
tween these structures. Therefore, we will likely find an fc
hcp mixed structure. However, it appears that our field c
figuration helps a fourfold symmetry in the plane of th
rotating field and the fcc structures may be more favorab
Nevertheless, we are awaiting experimental evidence on
proposed structure transformation.

FIG. 3. The dipole interaction energy per particle plotted aga
q for different ratior 5Exy /Ez of the rotating to axial field strength
For hard spheres, the accessible regions are within the vertical
depicted by Tao’s bct and fcc. Along Tao’s bct line and from botto
to top, r 5 0.0, 1.0, 1.6, 2.0, 2.2, 2.4, 2.6, 3.0, 4.0, and`. It is
evident that the fcc structure is the most stable for larger.
1-4
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Our calculations have been performed up to the po
dipole approximation, which is in the same spirit as done
Tao and Sun@2#. A dipole-induced-dipole~DID! model,
which takes into account the mutual polarization effect
tween touching particles, can drastically improve the ac
racy towards the fully multipolar calculations@12#. Since the
DID contribution becomes important for small reduced se
ration s5d/2R,1.1 @12#, we can simplify the calculations
by limiting ourselves to touching spheres only. We may om
the nontouching spheres~unless the spheres get very close
that s5d/2R,1.1). Each sphere is in contact with eig
neighboring spheres in the bct lattices and 12 neighbo
spheres in the fcc lattice and the number of DID imag
dipoles is therefore finite. The generalization thus includ
the original point dipoles as well as all the DID images
poles at well-defined positions in the unit cell and the gene
formula @Eq. ~4!# can indeed be used. The incorporation
the more accurate DID model into the Ewald-Kornfeld fo
mulation is underway. However, we believe that the poi
dipole results remain qualitatively correct.
na
o
L

ld

03150
t-
y

-
-

-

it

g
s
s

al
f

-

In conclusion, we have applied the Ewald-Kornfeld fo
mulation to a bct lattice of point dipoles to examine t
effects of structure transformation on the local field distrib
tion. We have found that the local field exhibits a nonmon
tonic transition from bct to fcc. Moreover, we showed th
the change in the local field can lead to a generaliz
Clausius-Mossotti equation for the bct lattices.
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