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Field-induced structure transformation in electrorheological solids
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We have computed the local electric field in a body-centered tetragioctalattice of point dipoles via the
Ewald-Kornfeld formulation, in an attempt to examine the effects of a structure transformation on the local-
field strength. For the ground state of an electrorheological solid of hard spheres, we identified a different
structure transformation from the bct to the face-centered diitig lattices by changing the uniaxial lattice
constantc under the hard-sphere constraint. In contrast to the previous results, the local field exhibits a
nonmonotonic transition from bct to fcc. Asincreases from the bct ground state, the local field initially
decreases rapidly towards the isotropic value at the body-centered cubic lattice, decreases further, reaching a
minimum value and increases, passing through the isotropic value again at an intermediate lattice, reaches a
maximum value and finally decreases to the fcc value. An experimental realization of the structure transfor-
mation is suggested. Moreover, the change in the local field can lead to a generalized Clausius-Mossotti
equation for the bct lattices.
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[. INTRODUCTION point dipoles. The bct lattice can be regarded as a tetragonal
lattice, plus a basis of two point dipoles, one of which is
When a strong field is applied to a composite medium, thdocated at a corner and the other of which at the body center
induced change of the medium can lead to spectacular bef the tetragonal unit cell. The tetragonal lattice has a lattice
havior, both in electrical transport and in optical responseconstantc=qé¢ along thez axis and lattice constants=b
[1]. If a strong electric field is applied to a suspension of= ¢q~ %2 along thex andy axes. The volume of the tetrago-
particle_s where the particles have a large glectric polarizabilpg| unit cell remainsV.=¢3 as q varies. In this way, the
ity, the induced dipole moments of the particles can order th@jegree of anisotropy of the tetragonal lattice is measured by

suspended particles into a body-centered tetragmdllat- oy q is deviated from unity and the uniaxial anisotropic
tice[2]. This process is known as the electrorheologie®)  ,.is is along the axis.

effect. So far, the lattice parametérremains arbitrary. For hard

Recentlyl Tao and JianfB] proposed that a structure spheres in an ER solid, however, the lattice paramg&tan
transformation from the bct ground state to some other lat; . . PRI, .
e determined from the relationa2+ c?=16R?, whereR is

tices can occur when one simultaneously applies a magnet i . .
Y app J e radius of the spheres. The hard-sphere condition requires

field perpendicular to the electric field and the polarized par-
ticles possess magnetic dipole moments. Sheng and coworR= 2R andc=2R. For the bct ground stata=b= \6R and

ers[4] verified the proposal experimentally and observed &= 2R, while for the fcc latticea=b=2R andc= {8R [2].
structure transformation from the bct to face-centered cubidhe bcc lattice is characterized ly=b=c=\16/3R. Each
(fce) lattices. Motivated by these studies, we propose an alsphere has a point dipole embedded at its center.
ternative structure transformation from the bct to the fcc The lattice vector of the tetragonal lattice is given by
structure, through the application of electric fields only.

The plan of the paper is as follows. We will adopt the R=&(q~YAx+q~ Ymy+qn2), (1)
point-dipole approximatiof2] and calculate the dipole lat-

tice sum via the Ewald-Kornfeld formulation in Sec. Il. In wherel,m,n are integers. Suppose there &tgoint dipoles

Sec. lll, we discuss the effects of a structure change on the | otad ar in a unit cell. The local electric fiel&: at a
local field when the lattice constants vary. If we change th£‘articular poir|1t dipole at, cén be expressed as a sulm of the
uniaxial-lattice constant under the hard-sphere condition, o AL s

glectrlc field of all dipoles atg; :

series of transformations occur among the bct ground stat
body-centered cubifhco), intermediate and fcc latticdsee ,
Fig. 1). The results will be compared with those of a tetrag- E=SS Taop @)
onal lattice. We also make a contact with macroscopic con- 'SR iR Py

cept and derive the Clausius-Mossotti equation. In Sec. IV,

we will compute the dipole interaction energy as a functionwhere “prime” denotes a restricted summation that excludes
of various lattices and discuss a possible structure transfoj—=i whenR=0 and

mation by the application of rotating electric fields. Discus-

sion and conclusion on our results will be given. 1

AP
Il. FORMALISM [ri=rj]

In this section, we apply the Ewald-Kornfeld formulation is the dipole interaction tensor. Equati®) can be recast in
[5,6] to compute the local electric field for a bct lattice of the Ewald-Kornfeld forn{5,6]:
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(a) Tao lattice unit cell (b) bec unit cell
FIG. 1. A sequence of unit cells of bct lattices
during structure transformatioa) Tao’s bct lat-
tice, (b) bcc lattice,(c) intermediate lattice, and
(d) fcc lattice.
(c) the Intermediate lattice unit cell (d) fec unit cell

pi~Ei=§ ; [—(pi-P)B(rig) + (Pi Tigj)

T
X(pj rIR]) IR])] Eiex m

x| (pi- G)exp(iG 1) > <pj~G>eXF“iG'”)}
J

. 7°p?
<N

wherer;g;=|ri—rg;|, 7 is an adjustable parameter a@Gds
a reciprocal lattice vector:

(4)

2 “ - “
G=?(q1’2ux+q1/2vy+q’lwz). (5)
The B and C coefficients are given by

B(r)=&3ﬂr) \/Z_nzexq 7°r?) (6)

r

C(r)=

3erfdnr)+< 47]3 67

2.2
i \/;r2+\/;r4)exp( 7r°), (7)

real-lattice vectoiR as well as the reciprocal-lattice vector
G. Here we have considered an infinite lattice. For finite
lattices, one must be careful about the effects of different
boundary condition§7].

We should remark that although a tetragonal lattice is con-
sidered, Eq(4) is applicable to arbitrary Bravais lattices. The
adjustable parametey is chosen so that both the summa-
tions in the real and reciprocal lattices converge most rapidly.
In what follows, we will limit ourselves to the bct cell with
two dipoles per tetragonal cell, and the Ewald-Kornfeld sum-
mation [Eq. (4)] can be carried out. We will consider two
cases depending on whether the dipole moment is parallel or
perpendicular to the uniaxial anisotropic axis. In both cases,
we will compute the local field as a function of the degree of
anisotropyq.

lll. EFFECTS OF STRUCTURE TRANSFORMATION
ON THE LOCAL FIELD

Consider the longitudinal field cage= pz, i.e., the dipole
moments being along the uniaxial anisotropic axis. The local
field E at the the lattice poinR=0 reduces to

Ez=pj§1 ; [-B(R)+Z0°C(R))]

_Amp 4pn°

where erfc() is the complementary error function. Thus the
dipole lattice sum of Eq(2) becomes a summation over the
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andE,=E,=0. In the equationz; andR; are respectively on the same figure. Ag decreases, the local field for the
given by longitudinal-field case increases rapidly while that for the
transverse-field case decreases rapidly. In both cases,gvhen
-1 . . . deviates from unity, the effect of anisotropy has a pro-
zz=n———, Rj=|R-———(axtay+cz), nounced effect on the local-field strengths.

Unlike the tetragonal case, the local field of the bct lattice
andS(G) = 1+ exdi(u+v-+w)/] is the structure factor. The does not vary much near=1. When we magnify the scales
local field will be computed by summing over all integer in Figs. 2c) and 2d), we observe a nonmonotonic behavior
indices (,!,m,n)#(1,0,0,0) for the summation in the real @sdincreases: asincreases from _bct, the_z local field initially
lattice and (1,v,w) # (0,0,0) for that in the reciprocal lattice. decreases rapidly towards the isotropic value at bce, de-
Because of the exponential factors, we may impose an upp&féases further, reaching a minimum value and increases,
limit to the indices, i.e., all indices ranging fromL to L, passing through the |§otrop|c value again at an intermediate
whereL is a positive integer. Fag+1, the regions of sum- lattice, reaches amaximum value and'flnally depreaseg to }he
mation will be rectangular rather than cubic in both the reaffcC Value. The isotropic value of the intermediate lattice is
and reciprocal lattices. The computation has been repeaté’ét”bUted to the symmetry of the dipole interaction tensor.

for various degrees of anisotropy withranging from 0.5 to Our present theory is of microscopic origin, in the sense
2.0. A plateau value foE, is found for eachq within a that we have computed the lattice summation by the Ewald-

certain range ofy values: ¥ 7<10°% For instance, the Kornfeld fqrmulation.We have. not_invoked_any macroscopic
calculations withy = 10°S yield numerical results already ac- CONCeps like the Lorentz cavity fie[@-11) in the calcula-
curate up to 16 significant figures, indicating that conver-ions. However, to corroborate with these established con-
gence of the local field has indeed been achieved with th&EPtS can lead to a modification of the Clausius-Mossotti
upper limit L=4. For larger anisotropyeither q<1 orq  €duation.

>1), a spherical region of summation can help the conver- More precisely, we use the result of the local field to
gence[8]. evaluate the effective polarizability.; of the dipole lattice.

For the transverse-field case in which the dipole momentg,—he total field acting on a dipole is the sum of the applied
are perpendicular to the uniaxial anisotropic axis, @}jcan field Eq and the local field due to all other dipoles, hence
still be applied to evaluate the local field by modifyi@g to

G, while taking the gradient along the direction of the di- p=a(Eo+BP),

pole, say thex axis, and obtain the expression of the local

field. where « is the polarizability of an isolated dipole angl
The results of the local-field strengtnormalized to =E/P is the local-field factor. We will usg, and By, to

47P/3) against log, g for the longitudinal and transverse- denote the local-field factors parallel and perpendicular to
field cases are plotted in Figsia2 and 2b) respectively. For  the uniaxial anisotropic axis. Note thaj= 8,,=4m/3 when
comparison, the corresponding results for a tetragonal latticq=1. Let P=p/V., the above equation becomes a self-
(8] (i.e., in the absence of the body cenjesse also plotted consistent equation. Solving yields
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o ~0.30 ; ; ; ; ;
p= (m) Eo= aefEo- 9
C

The effective dielectric constank.; is given by 1
+4magg/V,. Thus,

-0.34 ~ =

€ei— 1 AT
B'eent(3—=p") 3V

where B’ =3p/4m and V.=V,/2. For the bcc lattice’
=1, e satisfies the well-known Clausius-Mossotti equa-

: (10

-0.36 b

+—— Infinity %

energylparticle

——=-1.0.40

-038 [ /

tion. Thus Eq. (100 represents a generalization of the /
Clausius-Mossotti equation to the bct lattices. / /z[
/
_0.40 / 1 1 1 1 1
IV. STRUCTURE TRANSFORMATION VIA ROTATING 0.7 0.8 0.9 10 1.1 12 13

ELECTRIC FIELDS 4

The results of the local-field strength as well as the gen- FIG. 3. The dipole interaction energy per particle plotted against

eralized Clausius-Mossotti equation allow us to compute thé& for different ratior =E,, /E, of the rotating to axial field strength.
dipole interaction energy per particle in the ER solid similarFor hard spheres, the accessible regions are within the vertical lines

to calculations of Tao and Sui2]. If an uniaxial field E depicted by Tao’s bct and fcc. Along Tao’s bct line and from bottom

Al . . . . . . to top,r= 0.0, 1.0, 1.6, 2.0, 2.2, 2.4, 2.6, 3.0, 4.0, andlt is
szz is applied, the dipole |ntera_ct|0n energy per particle iSgyigent that the fcc structure is the most stable for large
given byu=—p-E/2¢,, wheree, is the dielectric constant
of the host medium. Sincg,= B,(2p/V,) andp=«aE,, we

obtain >2.6, the energy barrier disappears and the fcc structure is

the most stable. Physically one has to break the chains to
B make the structure transformation possible when the strength
- —23 (12) of the rotating electric field is sufficiently large.

(Ve/a®) From the energy consideration, we suggest that the struc-

. . . ture transformation be realized in experiments by applying a
2/ A3
in units ofp/e;a”. As g increases from the bet ground state rotating electric field in the plane perpendicular to the

to the fcc structures, the volume of the unit cell increases, iayia| electric field. In this field configuration, both the

initially, reaching a maximum at the bcc structure, thgn .de'time average value of the induced dipole moment and that of
creases (o the fce structure. AS the IOC"’“'e“ec'[”C'f'e'dthe rotating electric field vanish in the plane. However, the
strength remains almost constant in the rangegi<1.5, the instantaneous dipole moment will induce an overall attrac-

mcrgasedm thﬁ n&agmtude.of thhe d|||oole er}e:lgy per pa"ruge 'Hive force between the particles in the plane perpendicular to
attributed to the decrease In the volume of the unit cell. CoNg, e yiayial field. This is very different from the previous

comitantly, as shown in Fig. 3, the energy per particle ini'.transformation proposed by Tao and Jidisj and experi-

tially increases from the bct ground state, reaching a max"mentally verified by Sheng and coworkefd] by using

mum near the bce structure and then de_cregses all th_e Wa¥ossed electric and magnetic fields on microparticles that
towards the fcc structure. The transformation involves climb-

) . X 0ssess permanent magnetic dipole moments. In our case,
ing up an energy barrier beyond which the fcc structure bep P g P

bl hich is i ih th h fhe field configuration is all electrical; no magnetic field
comes s_ta €, which 1s in cqntrast \.N't the smooth and, /4 magnetic materials need to be used. Alternatively, we
monotonic transition proposed in previous wg4].

N | ; lectric field.. —rE. in th may apply the same rotating electric field configuration to a
ext we apply a rotating e.ec‘.“c 1€lE,,=rE, N the magnetorheological fluid to achieve the structure transforma-
plane perpendicular to the uniaxial electric field, where .

=E,y/E, is the ratio of the rotating to axial field strength. '

The instantaneous electric fields &g=E,, cosft+ ¢) and

E,=E,y sin(wt+¢), wherew is the angular velocity of the V. DISCUSSION AND CONCLUSION
rotating field andg is an arbitrary phase angle. In this case,
the dipole interaction energy per particle is modified to

u:

Here a few comments on our results are in order. As men-
tioned in Ref[3], the energy difference between the fcc and
2 hexagonal close-packetcp) structures is very small, and is

u=— Bat 1" Bxy (12) comparable to the thermal energy, there is a competition be-
(1+r2)(V/a%) tween these structures. Therefore, we will likely find an fcc-
hcp mixed structure. However, it appears that our field con-
in units of p?/e,a®. As shown in Fig. 3, when we increase figuration helps a fourfold symmetry in the plane of the
the ratior, the bct ground-state energy increases while thaotating field and the fcc structures may be more favorable.
fcc energy remains unchanged, but there is still an energilevertheless, we are awaiting experimental evidence on the
barrier between the bct and fcc states for smaWhenr proposed structure transformation.
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Our calculations have been performed up to the point- In conclusion, we have applied the Ewald-Kornfeld for-
dipole approximation, which is in the same spirit as done bymulation to a bct lattice of point dipoles to examine the
Tao and Sun[2]. A dipole-induced-dipole(DID) model,  effects of structure transformation on the local field distribu-
which takes into account the mutual polarization effect betion. We have found that the local field exhibits a nonmono-
tween touching particles, can drastically improve the accutonic transition from bct to fcc. Moreover, we showed that
racy towards the fully multipolar calculatiof$2]. Since the  the change in the local field can lead to a generalized
DID contribution becomes important for small reduced sepaciausius-Mossotti equation for the bct lattices.
ration c=d/2R<1.1[12], we can simplify the calculations
by limiting ourselves to touching spheres only. We may omit
the nontouching spherésnless the spheres get very close so
that o=d/2R<1.1). Each sphere is in contact with eight

neighboring spheres in the bct lattices and 12 neighboring _ .
spheres in the fcc lattice and the number of DID images This work was supported by the Research Grants Council

dipoles is therefore finite. The generalization thus include®f the Hong Kong SAR Government under Grant No. CUHK
the original point dipoles as well as all the DID images di- 4284/00P. K.W.Y. acknowledges the hospitality received dur-
poles at well-defined positions in the unit cell and the generalnd his participation in the Workshop on Soft Matter, hosted
formula [Eq. (4)] can indeed be used. The incorporation ofby the Institute of Physics of the Chinese Academy of Sci-
the more accurate DID model into the Ewald-Kornfeld for- ences, where the present work was initiated. We acknowl-
mulation is underway. However, we believe that the point-edge discussion with Jones T. K. Wan on various aspects of
dipole results remain qualitatively correct. the project.
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